
Editorial

‘There’s a hole in my bucket’: ‘No-flow’, ‘low-flow’, and
resuscitative calculus$

Wenn der Beltz em Loch hat � When the jug has a hole -
stop es zu meine liebe Lieses top it up my dear Liese
Womit soll Ich es zustopfen � With what shall I stop it -
mit Stroh, meine liebe Liese. with straw my dear Liese.

Earliest known archetype of the children’s song, “There’s a Hole in
My Bucket” Bergliederbüchlein (c 1700)

The resuscitation of cardiac arrest is an exercise in calculus.
Fundamentally, ischemic injury accumulates over time until it
eventually crosses some irrecoverable threshold. The whole of
resuscitation comprises efforts to both attenuate the rate of this
accumulation and ultimately cease further accrual by restoring
spontaneous (or occasionally extracorporeal) circulation. This
scenario is reminiscent of a quintessential mathematical problem,
in which one is to account for the simultaneous draining and filling of a
bucket and their combined effects on the change in vertical height of
water.

Suppose, metaphorically, that the height of water indicates the
probability of a given clinical outcome after cardiac arrest (e.g. return
of spontaneous circulation [ROSC], survival, neurologic recovery). At
the onset of cardiac arrest, a full bucket begins to drain at a given rate
(Fig. 1). After some elapsed interval, resuscitation commences and a
faucet opens. Superb resuscitation might even temporarily raise the
water level, but the rate of drainage eventually eclipses any additional
filling and the bucket will ultimately empty unless the drain is occluded
(i.e. restoration of circulation). The impact of the rates and intervals of
both drainage and filling on the height of water should become
apparent. In this fashion, one can model the time-dependent likelihood
of clinical outcomes over the course of resuscitation, given sufficient
parameters.

The elapsed interval between collapse and onset of CPR is
dubbed ‘no-flow’, whereas the elapsed interval between onset of CPR
and restoration of circulation is dubbed ‘low-flow’. Historically, their
effects on resuscitation outcome were only observed in animal models
of cardiac arrest that allowed for experimental manipulation. For
example, in porcine models, increasing durations of no-flow, while
holding low-flow and other variables constant leads to additional
myocardial and neuronal injury.1 The emergence of registry-based

cohorts and granular clinical trial datasets now allows for modeling
these interactions in humans. In this issue of Resuscitation, Guy, et al.
characterize how ‘no-flow’ affects the likelihood of neurologic recovery
at the time of hospital discharge.2

The authors conducted a secondary analysis of combined
datasets from two Resuscitation Outcomes Consortium (ROC)
trials, Prehospital Resuscitation Using an Impedance Valve
(PRIMED) and Continuous or Interrupted Chest Compressions
during CPR (CCC).3�5 Both trials enrolled consecutive adult, EMS-
treated, non-traumatic cases of out-of-hospital cardiac arrest
(OHCA) in North America and were neutral for the primary outcome.
ROC trials systematically recorded time-stamped data elements
synchronized to the monitor-defibrillator, including all milestones of
resuscitation. ‘No-flow’ was the interval between emergency
dispatch notification and onset of professional CPR. To ensure
the validity of ‘no-flow’ estimates, Guy, et al. included only subjects
with bystander-witnessed OHCA (presumably, with immediate
notification of the emergency dispatch system) and excluded
subjects with bystander-initiated CPR or AED use (given the inability
to identify the precise onset of CPR prior to EMS arrival. Out of
nearly 43,000 subjects in these merged datasets, 7299 eligible
subjects (17%) had complete data for both the independent variable
and outcome. Poisson regression modeled the relationship between
‘no-flow’ and modified Rankin scale (mRS) 0�3 at hospital
discharge with adjustment for Utstein covariates. The authors also
identified the observed ‘no-flow’ interval beyond which no subject
had mRS 0�3 and assessed for interactions with sex and initial
cardiac rhythm via stratified analysis of these subgroups. Increasing
‘no-flow’ interval was associated with lower likelihood of mRS 0�3
(adjusted RR 0.87; 95% CI 0.85�0.90). In other words, for each
additional minute of ‘no-flow’, the adjusted risk of mRS 0
�3 decreased by 13% (95% CI 10�15%). Subgroup analysis by
sex and initial cardiac rhythm yielded similar results. No subject with
‘no-flow’ beyond 20 min had eventual mRS 0�3.

The primary strengths of this work are the large population-based
cohort from which it is drawn, and the diligent analysis restricted to
those subjects with the greatest likelihood of valid time-stamp data.
These estimates have a high degree of internal validity. Paradoxically,
the primary limitation of these data is also one its strengths. By
restricting the sample to just those subjects with valid data, the authors
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were forced to exclude 83% of subjects in the merged datasets, raising
the possibility of selection bias and limited external validity.
Additionally, the authors elected not to adjust for subsequent ‘low-
flow’ in the Poisson regression. This approach does highlight the
specific impact of ‘no-flow’ on the likelihood of subsequent neurologic
recovery at hospital discharge. The requisite ‘low-flow’ may depend on
the preceding ‘no-flow’, which could obscure the true relationship
between ‘no-flow’ and clinical outcomes. However, the relative
contributions of ‘no-flow’ and ‘low-flow’ inherently impact the likelihood
of subsequent clinical outcomes and the precise interactions between
these two entities have yet to fully characterized. Finally, the included
sample spans the 2010 CPR guideline updates, which did introduce a
potential confounder in the paradigm shift to prioritize chest

compressions and revise resuscitation sequencing from A-B-C
(Airway, Breathing Circulation) to C-A-B (Chest compressions,
Airway, Breathing).6

These data showcase the collective efforts to model the relation-
ships between ‘no-flow’, ‘low-flow’, and clinical outcomes. Whereas
Guy et al. present the most comprehensive work to date on ‘no-flow’,
similar modeling of ‘low-flow’ has been conducted in large, North
American and Japanese population-based cohorts.7�11 Consider the
comparative effects of ‘no-flow’ and ‘low-flow’ on the likelihood of mRS
0�3 at hospital discharge in secondary analyses of ROC trial datasets
(Table 1). ‘No-flow’ appears to impart a greater degree of insult than
‘low-flow’. On a practical level, this underscores the critical need for
bystander recognition of cardiac arrest, bystander delivery of CPR,

Fig. 1 – A bucket of water illustrating the relationships between the ‘no-flow’ interval, the ‘low-flow’ interval, and the
time-dependent likelihood of clinical outcomes after cardiac arrest. A: A full bucket at the onset of cardiac arrest. B:
After elapsed ‘no-flow’, in which water drains out of the bottom of the bucket, resuscitation commences and new water
fills the bucket. C: After elapsed ‘low-flow’, the rate of drainage has outpaced the rate of filling and the bucket
approaches empty.

Table 1 – Comparative insults of ‘no-flow’ and ‘low-flow’ durations as indicated by the likelihood of subsequent
modified Rankin scale (mRS) 0�3 at hospital discharge. The subjects samples were derived from similar large,
North American cohorts of out-of-hospital cardiac arrest.

No-flow (Guy et al.
Resuscitation 2020)

Low-flow (Reynolds et al.
Circulation 2016)

n subjects n = 7299 n = 11,368
Prevalence of mRS 0�3 at hospital
discharge

8.4% (95% CI 8.4�9.1%) 8.0% (95% CI 7.5�8.5%)

Association with mRS 0�3 at hospital
discharge

RR 0.87 (95% CI 0.85�0.90) OR 0.93 (95% CI 0.92�0.95)

Approximate % reduction in risk of mRS
0�3 for each additional minutea

13% (95% CI 10�15%) 7% (95% CI 5�8%)

Approximate median lethal dose (LD50)
for subsequent neurologic recoveryb

5 min 10 min

Longest observed interval with mRS 0
�3

20 min 47 min

a OR approximates RR since the risk of mRS 0�3 in both studies is low (�8%).
b Elapsed interval at which the likelihood of mRS 0�3 at hospital discharge approaches 50%.

R E S U S C I T A T I O N 1 5 5 ( 2 0 2 0 ) 2 3 6 �2 3 8 237



and public access defibrillation, all in order to minimize ‘no-flow’.
Furthermore, this substantiates the consideration of ‘no-flow’ and ‘low-
flow’ duration as selection criteria for extracorporeal CPR candi-
dates.12 Conversely, ‘no-flow’ and ‘low-flow’ should not in and of
themselves justify termination of resuscitation (TOR). Time-based
estimates of the likelihood of clinical outcomes have yet to achieve a
sufficient degree of certainty to be used in isolation when considering
TOR. Obviously, the likelihood of subsequent survival or neurologic
recovery asymptotically approaches zero with sufficiently long ‘no-
flow’ or ‘low-flow’, but as the denominator of subjects declines over
time, the confidence intervals around these point estimates become
prohibitively wide.7�10

How do the compounding deleterious effects of ‘no-flow’ and ‘low-
flow’ influence subsequent clinical outcomes? While the mathematical
interaction terms have yet to be fully characterized, Adnet et al. offer a
glimpse of these relationships in a secondary analysis of a large
(n > 27,000 subjects), population based French OHCA registry. They
constructed 3-dimensional plots of unadjusted proportions of 30-day
survival (y-axis), ‘no-flow’ (z-axis), and ‘low-flow’ (x-axis).13 The
apparent rate of decline in the likelihood of 30-day survival was greater
along the ‘no-flow’ axis compared to the ‘low-flow’ axis. Instances of
30-day survival were still observed after prolonged ‘low-flow’, provided
that ‘no-flow’ was brief. The topographical contours of these plots were
greatly influenced by subject age, sex, initial cardiac rhythm, and
location of cardiac arrest (ostensibly a surrogate for witnessed
collapse).

The interactive model of ‘no-flow’, ‘low-flow’, and subsequent
clinical outcomes remains incomplete with exponential potential for
complexity. What are the precise interaction effects of ‘no-flow’ and
‘low-flow’ on subsequent clinical outcomes? What relative contribu-
tions of ‘no-flow’ and ‘low-flow’ are tolerable before crossing some
threshold of irreversible injury? Does longer ‘no-flow’ necessitate
longer ‘low-flow’ before restoration of circulation is possible? Are the
influences of ‘no-flow’ and ‘low-flow’ on clinical outcomes truly linear?
That is, do incremental increases of either impart the same additional
degree of injury if they occur earlier or later in resuscitation? How are
these interactions modified by Utstein covariates or subject-specific
comorbidities? How are these interactions modified by CPR quality
during ‘low-flow’? The number of additional questions prompted by
this work indicates that Guy et al. are pursuing a fruitful line of inquiry.
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