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A B S T R A C T

Successful resuscitation from cardiac arrest depends on provision of adequate blood flow to vital organs gen-
erated by cardiopulmonary resuscitation (CPR). Measurement of end-tidal expiratory pressure of carbon dioxide
(ETCO2) using capnography provides a noninvasive estimate of cardiac output and organ perfusion during
cardiac arrest and can therefore be used to monitor the quality of CPR and predict return of spontaneous cir-
culation (ROSC). In clinical observational studies, mean ETCO2 levels in patients with ROSC are higher than
those in patients with no ROSC. In prolonged out of hospital cardiac arrest, ETCO2 levels< 10mmHg are
consistently associated with a poor outcome, while levels above this threshold have been suggested as a criterion
for considering patients for rescue extracorporeal resuscitation. An abrupt rise of ETCO2 during CPR suggests
that ROSC has occurred. Finally, detection of CO2 in exhaled air following intubation is the most specific cri-
terion for confirming endotracheal tube placement during CPR. The aetiology of cardiac arrest, variations in
ventilation patterns during CPR, and the effects of drugs such as adrenaline or sodium bicarbonate administered
as a bolus may significantly affect ETCO2 levels and its clinical significance. While identifying ETCO2 as a useful
monitoring tool during resuscitation, current guidelines for advanced life support recommend against using
ETCO2 values in isolation for decision making in cardiac arrestmanagement.

Introduction

End-tidal carbon dioxide (ETCO2) is the partial pressure of carbon
dioxide (PCO2) in the exhaled air measured at the end of expiration.
CO2 is produced in perfused tissues by aerobic metabolism, it diffuses
from the cells into the blood and is transported by the venous return to
the lungs, where it is removed by ventilation. The major determinants
of ETCO2 therefore include CO2 production, cardiac output (CO), lung
perfusion and alveolar ventilation [1].

Capnography represents a continuous, non-invasive measurement of
PCO2 in the exhaled air during the breathing cycle. The correspondent
waveform is called a capnogram (Fig. 1).

In the typical capnogram ETCO2 is the value recorded at the end of
the plateau phase and it is the one which better reflects the alveolar
PCO2. Normally, ETCO2 is around 5mmHg lower than PCO2 in the
arterial blood (PaCO2). This gradient increases when there is a venti-
lation/perfusion mismatch in the lung that may occur because of pul-
monary embolism or lung hypoperfusion during cardiac arrest [2].

ETCO2 for monitoring the effectiveness of cardiopulmonary
resuscitation

In patients with cardiac arrest, cardiopulmonary resuscitation (CPR)
temporarily restores CO. Both experimental [3,4] and clinical [5] stu-
dies have shown that survival from cardiac arrest depends on provision
of adequate perfusion to vital organs. However, direct measurement of
organ blood flow during CPR is not clinically feasible. ETCO2 represents
a non-invasive measurement of the effectiveness of CPR in terms of
blood flow that is generated and the potential of successful resuscita-
tion.

In an experimental porcine model of cardiac arrest, Gudipati et al.
[6] showed that ETCO2 changes paralleled those of cardiac index (CI)
during cardiac arrest and subsequent CPR (Fig. 2). When ventricular
fibrillation was induced, ETCO2 dropped to zero along with CI. During
CPR, ETCO2 was about 25% of pre-arrest values, as was CI generated by
CPR. After successful defibrillation and return of spontaneous circula-
tion (ROSC), ETCO2 increased rapidly, exceeding its pre-arrest values.
This ETCO2 “overshoot” did not correspond to a proportional increase
of CI, and it could be interpreted as a CO2 washout from tissues that had
been poorly perfused during cardiac arrest.

Experimental studies demonstrated that during CPR ETCO2

https://doi.org/10.1016/j.resuscitation.2018.08.018
Received 18 July 2018; Received in revised form 13 August 2018; Accepted 20 August 2018

⁎ Corresponding author.
E-mail address: claudio.sandroni@policlinicogemelli.it (C. Sandroni).

Resuscitation 132 (2018) 73–77

0300-9572/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/03009572
https://www.elsevier.com/locate/resuscitation
https://doi.org/10.1016/j.resuscitation.2018.08.018
https://doi.org/10.1016/j.resuscitation.2018.08.018
mailto:claudio.sandroni@policlinicogemelli.it
https://doi.org/10.1016/j.resuscitation.2018.08.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.resuscitation.2018.08.018&domain=pdf


correlates well with CI (r= 0.79 ; p < 0.001) [7] coronary perfusion
pressure (r= 0.78; p < 0.01) [8] and cerebral blood flow (r= 0.64;
p= 0.01) [9]. In clinical studies a direct correlation between ETCO2

and CO or tissue perfusion has not been demonstrated yet, but it is
supported by indirect evidence of the association between ETCO2 and
CPR quality. In a multicenter observational study including 583 in-
hospital (IHCA) and out-of-hospital (OHCA) arrests, Sheak et al. [10]
showed that for every 10mm increase in chest compression depth,
ETCO2 increased by 1.4mmHg (p < 0.001). In a larger prospective
study by Murphy et al. [11] on 1217 OHCAs, a 10mm increase in chest
compression depth was associated with a 4.0% increase in ETCO2

(p < 0.0001), a 10/minute increase in chest compression rate with a
1.7% increase in ETCO2 (p=0.02), and a 10 breath/minute increase in
ventilation rate with a 17.4% decrease in ETCO2 (p < 0.0001). In
2013, a consensus document from the American Heart Association [12]
recommended ETCO2 as the primary physiological metric during CPR
when neither an arterial nor a central venous catheter is in place and
suggested titrating CPR performance to a goal ETCO2 of> 20mmHg.
The European Resuscitation Council (ERC) 2015 guidelines [13] on
advanced life support (ALS) suggest using waveform capnography
during cardiac arrest to assess the quality of CPR but did not provide a
specific ETCO2 target for resuscitation.

Another important quality target of CPR is avoiding hyperventila-
tion. Although ALS guidelines recommend ventilating patients at 10
breaths·min−1 during CPR, ventilation up to 30 breaths·min−1 by

rescue personnel in OHCA has been observed [14]. Hyperventilation
during ALS is more common in inexperienced or uncertified providers
[15] and has potential unfavourable haemodynamic effects [16]. Wa-
veform capnography allows monitoring of ventilation rate during CPR,
however interference from chest compression artefacts may degrade
ventilation detection and cause false hyperventilation alarms [17]. The
use of automated analysis of the capnogram can reduce measurement
error of the ventilation rate to 1.8 breaths·min −1 and accuracy of
ventilation alarms to> 99% [18].

ETCO2 to confirm endotracheal tube placement during CPR

Performing a rapid and successful endotracheal intubation during
resuscitation from cardiac arrest is important. Detection of CO2 in ex-
haled air using waveform capnography is the most specific method for
confirming endotracheal tube placement.

A study [19] from Grmec et al. on 246 OHCAs who underwent
prehospital intubation showed that capnography had 100[97–100]%
specificity and 100[98–100]% sensitivity for detecting correct en-
dotracheal tube placement. In a study [20] on 81 OHCAs who were
intubated on arrival to the emergency department, a detectable ETCO2

at the fifth breath after the intubation attempt measured using capno-
gram was also 100[72–100]% specific. However, ETCO2 was not de-
tectable in 26/72 correctly positioned tubes (64[52–75]% sensitivity).
The threshold for ETCO2 detection was 2mmHg in that study. In a
study from Tanigawa et al. [21] in 65 OHCAs who were intubated after
a mean of 34min from arrest, ETCO2 was undetectable in 5/5 oeso-
phageal intubations (specificity 100[55–100]%), but it could not be
measured in 26 tracheal intubations (sensitivity 57[43–69]%), al-
though a small ETCO2 waveform was observed in seven of these cases.
Similar results were shown in a subsequent crossover study [22] from
the same authors where 48 cardiac arrest patients were randomly as-
signed to ETCO2 or to oesophageal detector device to confirm intuba-
tion.

In summary, in cardiac arrest patients the presence of a detectable
ETCO2 on waveform capnography accurately confirms endotracheal
tube placement, while its absence does not completely rule out a suc-
cessful intubation. One potential cause for this may be an absent or very
low venous return because of prolonged resuscitation. In one to the
studies cited above, [21] patients with undetectable ETCO2 had longer
cardiac arrest duration at the time of measurement than those with
detectable ETCO2 although the difference was not significant
(37.6 ± 13min vs. 32.6 ± 13min, respectively).

In the four studies mentioned above the predictive value of an ab-
sent ETCO2 waveform for endotracheal tube misplacement was only
27[19–37]%. However, since an unrecognized oesophageal intubation
is potentially fatal, removing the tube in absence of a detectable ETCO2

on waveform capnography appears to be the most reasonable strategy.
Another caveat for ETCO2 as a detector of correct intubation is that

it does not discriminate between tracheal and bronchial placement of
the tube. For these reasons, clinical assessment with bilateral chest
auscultation is essential. The 2015 ERC ALS guidelines [13] recommend
using waveform capnography in addition to clinical assessment to
confirm and continuously monitor endotracheal tube placement.

ETCO2 to detect ROSC

ROSC is associated with a significant increase of ETCO2 (Fig. 2),
which raises up to a level three times above the values during CPR and
then slowly declines to a stable value in all patients that maintain ROSC
[24]. ETCO2 monitoring can therefore help detect ROSC during re-
suscitation to avoid continuing unnecessary chest compression. On the
other side, however, inappropriate interruptions of CPR should also be
avoided, since they are detrimental to defibrillation success and sur-
vival [19,25,26]. Therefore, when detecting occurrence of ROSC, a high
level of specificity (i.e., low rates of false positive results) are required

Fig. 1. Normal capnogram. A: expiration begins. A – B (phase I): consists of
anatomical dead space, where CO2 content is negligible. B – C (phase II, ex-
piratory upstroke): rapid rise in PCO2, the breath reaches upper airway from
alveoli. C – D (phase III, alveolar plateau): uniform levels of CO2 in the airway.
The value recorded at the end of this plateau represents ETCO2. D: inspiration
begins. D – E (phase IV, inspiratory downstroke): CO2 clearance. E: inspiration
ends. PCO2=partial pressure of carbon dioxide. Exp.= Expiration.
Insp.= Inspiration.

Fig. 2. Relationship between ETCO2 and cardiac index before cardiac arrest,
during CPR and after restoration of spontaneous circulation. CI= Cardiac
Index. CPR=Cardiopulmonary Resuscitation. VF=Ventricular Fibrillation.
Reproduced from Gudipati et al. Circulation 1988; 77:234-9, with permission.
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[27].
In a retrospective case control study conducted on 108 OHCAs,

Pokorna et al. [28] showed that a sudden increase of ETCO2 value
of> 10mmHg had 80% sensitivity but only 40% specificity in in-
dicating that ROSC had occurred. In a subsequent prospective, cross-
sectional study in 178 non-traumatic OHCAs, Lui et al. [29] showed
that an ETCO2 rise ≥10mmHg during CPR had 33% [95%CI 22–47%]
sensitivity and 97% [95%CI 91–99%] specificity to detect ROSC.
However, the median delay time between that 10-mmHg ETCO2 in-
crease and the subsequent ROSC, however, was 12min, much longer
than the 2min interval between two subsequent pulse checks as per the
ALS algorithm.

The ERC ALS 2015 guidelines1 indicate that ETCO2 can be a marker
of ROSC during CPR and suggest checking electrocardiogram for pre-
sence of an organized rhythm when a rise in ETCO2 occurs. However,
no specific ETCO2 threshold for interrupting CPR could be re-
commended.

ETCO2 to predict survival from cardiac arrest

Since ETCO2 is expected to reflect organ perfusion during CPR, it
may not only represent a target of resuscitation, but also a predictor
indicating when prolonged CPR is futile. In 1997, Levine et al. [30]
investigated on the association between ETCO2 measured after 20min
of ALS and survival to hospital admission in 150 adults with OHCA
from primary cardiac cause associated to pulseless electrical activity
(PEA). Results showed that no patient with ETCO2≤10mmHg after
20min of ALS survived to hospital admission, while all patients with
ETCO2 > 10mmHg survived, which translated in 100% sensitivity and
specificity for prediction of pre-hospital ROSC. These results were
confirmed in a larger subsequent study from Kolar et al. [31] on 737
OHCAs from all rhythms using a > 14.3 mmHg threshold at 20min.
The study also measured ETCO2 at 0, 10, and 15min and showed that
no patient with< 10mmHg ETCO2 survived at any time.

ETCO2 has also been investigated as a predictor of ROSC at earlier
stages of resuscitation, when it could be even more clinically useful.
However, evidence shows that in this case its accuracy is generally
lower. In the study from Levine et al. [30] mentioned above, initial
ETCO2 values did not differ between survivors and non-survivors
(12.3 ± 6.9 vs. 12.2 ± 4.6mmHg; p= 0.93). In the Kolar study,
ETCO2 specificity progressively decreased from 100% at 20min to 98%,
60% and 50% at 15, 10, and 0min respectively [31]. Other studies
[32–34] confirmed a low accuracy of initial ETCO2 in predicting ROSC,
especially as far as specificity was concerned. In patients with asphyxial
arrest this is likely because their initial ETCO2 is high, reflecting pre-
arrest hypercapnia rather than optimal tissue perfusion [35].

In general, ETCO2 values tend to decrease during CPR in patients in
whom resuscitation is unsuccessful, while they tend to increase in those
who achieve ROSC, probably reflecting a progressive improvement in
tissue perfusion and venous return [30,33]. For this reason, ETCO2

trends might be more appropriate than point values for predicting
ROSC during CPR. However, evidence on this is still limited [36].

Most of the studies on predictive value of ETCO2 have important
limitations, including lack of power analysis or blinding, uncontrolled
ventilation during CPR, and inconsistent or undefined timings of ETCO2

measurement [37,38]. Additional well-designed studies are needed to
better identify the optimal measurement timings and cut-off values for
prognostication using ETCO2. The 2015 International Consensus on
Cardiopulmonary Resuscitation and Emergency Cardiovascular Care
Science With Treatment Recommendations (CoSTR) [39] on ALS re-
commends against using ETCO2 cut-off values alone as a mortality
predictor or for the decision to stop a resuscitation attempt.

A specific prognostic indication for ETCO2 measurement during CPR
is the identification of patients with refractory cardiac arrest who are
eligible for emergency extracorporeal life support. When resuscitation
lasts longer than 20min the chances of achieving a meaningful survival

with conventional CPR are very low [40,41] and extracorporeal car-
diopulmonary resuscitation (ECPR), with veno-arterial extracorporeal
membrane oxygenation (VA-ECMO), can be used as a rescue therapy.
However, the potential benefit of ECPR should be balanced against the
risk of futility, post-anoxic brain damage [23] and high costs [40,41],
so that selecting patients who will benefit most from ECPR is essential.
The 2009 Guidelines on indications for the use of extracorporeal life
support in refractory cardiac arrest issued by French medical Societies
[42] recommended ETCO2 above 10mmHg as a criterion for con-
sidering ECPR in patients with refractory cardiac arrest with no-flow
duration ≤5min and low-flow duration ≤100min. However, two re-
cent systematic reviews which investigated predictors of survival after
ECPR in refractory OHCA [43] or IHCA [44] did not find evidence
supporting the use of ETCO2 in this context.

Another specific prognostic indication of ETCO2 may be prediction
of defibrillation success. A recent retrospective study on 62 patients
with OHCA from ventricular fibrillation [45] showed that none of them
could be successfully defibrillated when ETCO2 in the minute preceding
the shock was<7mmHg, while defibrillation was 100% successful in
patients whose ETCO2 in the minute preceding the shock was>45
mmHg. However, sensitivities for these signs were very low (5% and
7%, respectively). These preliminary data will need confirmation from
further studies.

Confounding factors

When interpreting ETCO2 values during CPR a series of confounding
factors need to be taken into account. As mentioned above, in patients
with a respiratory cause of arrest, ETCO2 may initially be high [35,46]
as a result of hypercapnia and may therefore not reflect cardiac output
generated by CPR.

Conversely, hyperventilation decreases ETCO2 levels during CPR. In
a pig model of cardiac arrest Gazmuri et al. [47] demonstrated that
increasing either respiratory rate from the recommended value of 10
breaths∙min−1 to 33 breaths∙min−1, or tidal volume from 6ml kg−1 to
18ml kg−1 during CPR had similar effects on the mean ETCO2, which
decreased from 43 ± 8 to 20 ± 1 and 20 ± 6mmHg, respectively
(Fig. 3). When both ventilation rate and tidal volume were increased

Fig. 3. ETCO2 plotted as a function of the minute volume delivered during CPR
with four different ventilation patterns: 10 breaths · min−1 and 6·ml·kg−1 tidal
volume, 10 breaths · min−1 and 18ml·kg−1, 33 breaths · min−1 and 6ml·kg−1

and 33 breaths · min−1 and 18ml·kg−1 (see legend). Each data point represents
the ETCO2 of one experimental subject obtained by averaging the values at
minutes 2, 4, 6, and 8. The regression line is based on an inverse first order
polynomial function and is shown with its 95% confidence intervals.
Reproduced from Gazmuri R et al. Resuscitation 2012; 83:259-64, with per-
mission.
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from baseline to 33 breaths·min−1 and 18ml kg−1 respectively, ETCO2

decreased further to 14 ± 2mmHg but the rate of decrease was slower.
Interestingly, no differences were observed in terms of aortic, coronary,
and cerebral perfusion pressures across the groups assigned to the four
different ventilation patterns.

Both ETCO2 values and their clinical significance may be affected by
drugs used during resuscitation. In experimental CPR the administra-
tion of adrenaline is followed by a rapid decrease of ETCO2 despite a
parallel increase in coronary and cerebral perfusion pressure [2,48,49].
The presumed mechanism is a reduced CO2 elimination through the
lungs due to an adrenaline-induced constriction of the pulmonary
vasculature with increased shunting and ventilation-perfusion mis-
match [2]. However, an actual reduction of tissue perfusion due to the
negative effects of adrenaline on microcirculation mediated by its α-1
agonist action cannot be excluded [50]. In a canine model of cardiac
arrest Martin et al. [49] showed that the positive correlation between
coronary perfusion pressure and ETCO2 was lost two minutes after the
administration of adrenaline (from r= 0.97, p=0.0005 to r= 0.35,
p=0.24). Therefore, low or decreasing ETCO2 levels during CPR may
not necessarily indicate poor prognosis when measured shortly after an
adrenaline bolus. In a clinical observational study from Callaham et al.
[51] ETCO2 decreased in 25/64 (39%) cardiac arrest patients four
minutes after adrenaline was administered. However, presence of an
ETCO2 decrease after an adrenaline administration was most often as-
sociated with ROSC, while absence of an ETCO2 decrease had a 92%
positive predictive value for no ROSC.

The administration of sodium bicarbonate during CPR transiently
elevates ETCO2 because buffering of H+ with bicarbonate produces
CO2. In an animal model of arrest, intravenous administration of
0.2 mmol ∙ kg−1 of sodium bicarbonate during resuscitation was fol-
lowed by a mean ETCO2 increase of 6.4 ± 0.5 mmHg [[52]]. Rescuers
should be aware of this, in order not to misinterpret an ETCO2 rise
following bicarbonate administration as patient having ROSC. When
compared with the transient ETCO2 increase after bicarbonate bolus,
the ETCO2 rise following ROSC is much higher and steady [24].

Conclusion

Measurement of ETCO2 is currently the only noninvasive clinical
tool for estimating organ perfusion during CPR. During experimental
CPR, ETCO2 has shown a significant positive correlation with cardiac
index and with coronary and cerebral perfusion pressures. In observa-
tional studies on pre-hospital cardiac arrest, ETCO2 levels below
10mmHg after 20min of ALS were highly predictive of pre-hospital
mortality. However, accuracy of ETCO2 as a predictor of ROSC is lower
when it is measured earlier during cardiac arrest. In addition, the ae-
tiology of cardiac arrest, changes in ventilation patterns, and the effects
of adrenaline or sodium bicarbonate may significantly affect ETCO2

levels during resuscitation.
ETCO2 monitoring can be used to confirm intubation during cardiac

arrest. While detection of ETCO2 in the exhaled air is the most specific
sign confirming placement of endotracheal tube, absence of detectable
ETCO2 does not always indicate a failed intubation. Furthermore,
ETCO2 cannot discriminate between endotracheal and endobronchial
tube placement, and clinical confirmation with chest auscultation is
recommended. Finally, an abrupt ETCO2 rise during CPR suggests that
ROSC has occurred. However, in order to achieve a sufficient specifi-
city, detection of ROSC using ETCO2 rise may require several minutes,
which limits its clinical applicability. Current guidelines recommend
against using ETCO2 levels as the only criterion for decision making
during cardiac arrest.
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